

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR

Siddharth Nagar, Narayanavanam Road – 517583

QUESTION BANK (DESCRIPTIVE)

Subject with Code : EMTL(16EC409)

Course & Branch: B.Tech – ECE

Year & Sem: II-B.Tech & II-Sem

Regulation: R16

<u>UNIT-I</u>

ELECTROSTATICS-1

1.(a)State Coulomb's law and write the equation of \mathbf{F} that exists between two unlike Charges? [6]	M]
(b) Three Point Charges $Q_1=1$ mc, $Q_2=2$ mc and $Q_3=-3$ mc are respectively located at (0,0,4),	
(-2,6,1) and (3,-4,-8). Calculate the Power on Q1. [6	σM]
2.(a)What are the types of Charge Distributions.Determine the Electric Field Intensity Due to infi	inite
Surface Charge. [6	σM]
(b) A Point Charge of 20nc is Located at the Origin .Determine the Magnitude and Direction of	f the
electric Field Intensity \overline{E} at the Point (1,3,-4) [6]	σM]
3.(a)Define the Electric Flux Density. A Point Charge of 30nc is located at the origin. While the P	lane
y=3 carries a charge $10\eta c/m^2$. Find Density at (0,4,3). [6]	σM]
(b) Point Charges $Q_1=4\mu c$, $Q_2=-5\mu c$ and $Q_3=2\mu c$ are located at $(0,0,1)$. $(-6,8,0)$ and $(0,4)$	4,-3)
respectively. Find \overline{D} at the Origin. [6]	σM]
4.(a) State the Gauss's Law. Apply Gauss's law to evaluate Electric Flux Density \overline{D} for a Uniform	rmly
charged Sphere. [6	σM]
(b) $\overline{D} = \left(2y^2 + Z\right)\overline{a_x} + 4xy\overline{a_y} + x\overline{a_z}$, Find [6]	σM]
(i) The Volume Charge Density at (-1,0,3)	
(ii) The Flux through the Cube defined by $0 \le x \le 1, 0 \le y \le 1, 0 \le z \le 1$	
(iii) The Total Charge Enclosed by the Cube	
5.(a).Define Eclectic Potential.What is the Relationship Between \overline{E} and V [6]	σM]
(b) Spherical surfaces r=2,4 and 6 m carrying uniform charge density of 20 $\eta c/m^2$, $-4\eta c/m^2$ and	$ ho_{_{s0}}$
Respectively [6	δM]
(i) Find the Flux Density \overline{D} at r=1, 3 and 5 m	
(ii) Determine ρ_{s0} such that $\overline{D}=0$ at r=7 m	
6. (a).Define and Derive Energy Density for Electrostatic Fields. [6	σM]
(b)A Point Charge 100 pC is located at (4,1,-3) while the x-axis carries charge $2\eta C/m$. If the P	lane
z=3 is also carries charge $5\eta C/m^2$, find \overline{E} at (1,1,1)	
EMTL Pa	ige 1

QUESTIONBANK	2019
7.(a).Define and Derive Convection and Conduction Current.	[6M]
(b) If $\overline{J} = \frac{1}{r^3} \left(2\cos\theta \overline{a_r} + \sin\theta \overline{a_{\theta}} \right) A/m^2$, Calculate the Current Passing through	[6M]
(i) A Hemispherical shell of Radius 20 cm, $0 < \theta < \pi/2, 0 < \phi < 2\pi$	
(ii) A Spherical Shell of Radius 10cm	
8.(a)Explain the Concept of polarization in Dielectrics.	[6M]
(b) Define the Following Terms	[6M]
(i) Eclectic Susceptibility (ii) Dielectric Constant	
(iii) Dielectric Strength (iv)Dielectric Breakdown	
9.(a) Derive the Continuity Equation and Relaxation time for Electrostatic Fields.	[6M]
(b) In a one-dimensional device, the Charge density is given by $\rho_v = \rho_0 \frac{x}{a}$. If $\overline{E} = 0$ at x=	=0 and
V=0 at x=a, find V and \overline{E} .	[6M]
10. Define Capacitance. Write about Different types of Capacitors and give the exp	pression for
Capacitance.	[12M]

QUESTIONBANK 2019

[6M]

<u>UNIT-II</u> MAGNETOSTSICS

1.(a).State Biot-Savart's Law.

2 A in the $-\mathbf{a}_y$ Direction. Assume it is part of a large circuit. Find \overline{H} at	
(i) A(2,3,0)	
(ii)B(3,12,-4) [6M]	
2. (a)What is the Magnetic field Intensity Due to a Straight current carrying filamentary condu	uctor of
finite length. [6M]	
(b) Find \overline{H} at (-3,4,0) due to the Current Filament Shown in the Figure [6M]	
$A = \begin{bmatrix} z \\ 3A \\ -3 \bullet \\ -3 \bullet \\ -3 \bullet \\ -3 \bullet \\ P(-3,4,0) \\ -3 \bullet \\ Y$	
3. (a).State Ampere's Circuit Law.	[6M]
(b)Determine the Magnetic Field Intensity due to a infinitely long coaxial Transmission line.	[6M]
4.(a).Define and Derive Maxwell's Equations for Elctric and magnetic Fields.	[6M]
(b).Determine the Magnetic Flux Density due to a Infinite Sheet of Current	[6M]
5.(a). Write about Magnetic Vector and Scalar Potentials.	[6M]
(b).Given Magnetic Vector potential $A = -\frac{\rho}{a}$ wb/m, Calculate the total magnetic flux of	crossing
the $\phi = \frac{\pi}{2}, 1 \le \rho \le 2 \ m, 0 \le z \le 5 \ m$	[6M]
EMTL	Page 3

(b) A Positive Y-axis (Semi Infinite Line with respect to the Origin) Carries a Filamentary Current of

6.(a). A Current Distribution gives rise to the vector potential $A = x^2 y \overline{a_x} + y^2 x \overline{a_y} - 4xyz \overline{a_z}$ Wb/m. Calculate the following [6M] \overline{B} at (-1,2,5) (i) (ii) The Flux through the surface defined by $z=1, 0 \le x \le 1, -1 \le y \le 4$ (b)Explain about Non Existence of Magnetic Mono pole. 7.(a).Define Magnetic Force.Explain about the Magnetic force on a one Current Element. [6M] (b) In a Conducting Medium, $\overline{H} = y^2 z \overline{a}_x + 2(x+1)yz \overline{a}_y - (x+1)z^2 \overline{a}_z$ A/m, Find [6M] (i) \overline{I} at (1,0,-3) (ii) The Current Passing through y=1, $0 \le x \le 1, 0 \le z \le 1$ 8.(a).Explain about Lorentz Force Equation. [6M] (b) In a Certain Conducting Region, $\mathbf{H}=yz(x^2+y^2)a_x-y^2xza_y+4x^2y^2a_z$ A/m [6M] (i) Determine **J** at (5,2,-3) (ii) Find the Current passing through x=-1,0<y, z<2(iii) Show that $\nabla B = 0$ 9. Explain about the Any two applications of Ampere's Circuit law. [12M] 10.(a). Explain about Poission's Equation of Magneto-statics. [6M] (b).An infinitely filamentary wire carries a current of 2A in the +z direction .Calculate [6M] (i) **B** at (-3,4,7) (ii) The flux through the square loop described by $2 \le \rho \le 6, 0 \le z \le 4, \phi = 90^{\circ}$

<u>UNIT – III</u>

MAXWELL'S EQUATIONS (TIME VARYING FIELDS)

1.(a).State and Explain the Faraday's laws in Electromagnetic induction.	[6M]
(b) Show that the Displacement Current Density $J_D = \frac{\partial D}{\partial t}$	[6M]
2. Write down the Maxwell's Equations in their integral form. Derive the Corresponding Equation	ions for
fields varying harmonically with time.	[6M]
4. (a).Explain Faraday's law of electromagnetic induction and derive the Expression for Induces	
e.m.f	[6M]
(b)Obtain Lorentz's Force equation	[6M]
5. (a).Derive the Expressions for Displacement Current.	[6M]
(b)A Parallel-plate capacitor with plate area of 5cm ² and Plate separation of 3 mm has a	voltage
$50\sin 10^3$ t V applied to its plates.Calculate the Displacement Current assuming $\mathcal{E} = 2 \mathcal{E}_0$	[6M]
6.(a).Derive the Boundary Conditions for time varying Fields.	[6M]
(b). A Medium is characterized by $\sigma_{=0}$, $\mu = 2 \mu_0$ and $\mathcal{E} = 5 \mathcal{E}_{0.if} H = 2 \cos(\omega t - 2)$	$(3y)\overline{a}_z$
A/m, calculate ω and E	[6M]
7.(a). Explain the Following	[6M]
(i) Motional e.m.f (ii)Transformer e.m.f	
(b)Give the reason why ampere's Law is In-consistence and drive displacement current	[6M]
8Derive the Expression for one of the Maxwell's equation $\nabla \times \overline{E} = -\frac{\partial B}{\partial t}$	[6M]
9. Show that $\nabla \times E_m = J + \frac{\partial D}{\partial t}$	[6M]
10.Define the Following Terms	[6M]
(i)Inductance (ii) Mutual Inductance (iii)Generator e.m.f (iv)Magnetic Vector Potent	ial

<u>UNIT – IV</u> <u>EM WAVE CHARACTERISTIC-I &II</u>

1. (a).State Poynting theorem. What does poynting vector represents? [6M] (b).Given a Uniform Plane wave in air as $\overline{E} = 40 \cos(wt - \beta z)\overline{a_x} + 30\sin(\omega t - \beta z)\overline{a_y}$ V/m. Find **H**_i, and if the wave encounters a perfectly conducting plate normal to the z-axis at z=0,find the reflected wave **E**_r and **H**_r [6M] 2. (a).What is Polarization.What are the Different types of Polarization? [6M]

(b) In a lossless Dielectric for which $\eta = 60\pi, \mu_r = 1, \text{ and } \mathbf{H} = -0.1\cos(\omega t - z)\overline{a_x} + 0.5\sin(\omega t - z)\overline{a_y}$ A/m, Calculate \mathcal{E}_r, ω and \overline{E} [6M]

3. (a).Derive the Relation between **E** and **H** in free Space.

(b)In a Non magnetic medium

$$\overline{E} = 4\sin\left(2\pi \times 10^7 t - 0.8x\right)\overline{a_z}$$
 V/m ,Find

 $^{(i)}\mathcal{E}_{r}\eta$

(ii) Time Average Power carried by the wave

(iii) The Total Power crossing 100 cm^2 of plane 2x+y=5

4. Determine the reflected wave H_r , E_r and the transmitted wave E_t . Show that the Intrinsic Impedance

of the Lossy medium is
$$\eta = \sqrt{\frac{j\omega\mu}{\sigma + j\omega\varepsilon}}$$
 [6M]

5. Calculate the reflection coefficient for vertical polarization with oblique incident on perfect dielectric. [6M]

6. Define the Following terms

(i)Uniform plane wave (ii) Skin depth

(iii)Critical Angle (iv)Total Internal Reflection

7. (a)A Plane wave through a medium with $\mathcal{E}_r = 8$, $\mu_r = 2$ has $\overline{E} = 0.5 e^{\frac{z}{3}} \sin\left(10^8 t - \beta z\right) \overline{a_x}$ Determine the loss tangent, **H** field and Intrinsic Impedance. [6M]

[6M]

[6M]

[6M]

QUESTIONBANK 2019

(b)Derive the Expression for Transmission	Coefficient for the	ne Horizontal	Polarization	with Oblique
incidence.				[6M]
8.Define the following				[6M]

(i)Reflection efficient (ii)Poynting Theorem (iii) Transmission Coefficient

(iv)Snell's Law (v) Surface Impedance

9.A Plane wave Propagating through a Non Magnetic medium has $\overline{E} = 50 \sin \left(10^8 t + 2z \right) \overline{a_y}$ V/m, Find λ, ε_r and \overline{H} . [6M]

10.(a)Define the Conducting Medium and Obtain the Expression for Intrinsic impedance. [6M]

(b) Ensure the Transmission for Perfect Conductor with Normal incidence. [6M]

$\underline{UNIT - V}$

TRANSMISSION LINES-I &II

1.(a)Define Transmission line and Explain the Primary Constants.	[6M]
(b)An air line has a Characteristic Impedance of 70Ω and phase Constant of 3 ratio	ad/m at
100MHz.Calculate R,C,and L.	[6M]
2.(a)What is the Characteristic Impedance? Obtain the Relation between Characteristic Impedance?	pedance
and the Propagation Constant.	[6M]
(b)A Transmission line operating at 500 MHz has Z ₀ =80 Ω , α =0.04 Np/m, β =1.5 rad/m.	Find the
Line Parameters R,L,G and C	[6M]
3.(a).Define lossless and Distortion less t_r ansmission lines and write the Conditions for both.	[6M]
(b)A Distortion line has $Z_0=60\Omega$, $\alpha = 0.04$ Np/m, $u=0.6c$, Where c is the speed of the light	ght in a
vacuum.Find R,L, and G	[6M]
4.(a).Obtain the input impedance of Transmission line of length l characterized by Z_0 and	[6M]
(b).A telephone line has R=30 Ω /km, L=100 mH/km, G=0 and C=20 μ F/km, At f=1 KHz	z obtain
Z0, γ and Phase Velocity (<i>u</i>)	[6M]
5. Derive the Expression $Z_o = \sqrt{Z_{oc} Z_{sc}}$	[6M]
6.Explain the Construction of the Smith Chart .	[12M]
7.Define the Following Terms	[6M]
(i) Transmission Lines (ii) Relation between Group Velocity and Phase Velocity	
(iii)Standing wave (iv)Stub Matching (v)Application of Smith Chart	

EMTL

QUESTIONBANK 2019

8.A Loss less transmission line with $Z_0 = 50\Omega$ is 300m long Operates at 2 MHz. The Line is terminated with load $Z_L = 60 + j40\Omega$, if u = 0.6c on the line .Find the Reflection Coefficient ,Standing Wave ration S and the Input Impedance Zin [6M] 9. A Load of $100 + i150\Omega$ is connected to a 75 Ω lossless line. Find [12M] (i) _Г (ii)S (iii)The Load Admittance Y_L $(iv)Z_{in}$ at 0.4 λ from the load (v)The locations of V_{max} and V_{min} with respect to the load if the lone is 0.6 λ long (vi)Z_{in} at the Generator 10.A Certain transmission line operating at $\omega = 10^6$ rad/s has $\alpha = 8$ dB/m, $\beta = 1$ rad /m , and $Z_0 = 60 + j40\Omega$ And is 2m long. If the line is connected to the source of $10 \angle 0^\circ V_{Z_g} = 40\Omega$ And terminated by the load $20 + j50\Omega$, Determine the (i)Input impedance (ii)The sending-end Current (iii)The Current at the middle of the line [12M]

Prepared by: C.PRASAD.